Software Development Models 1

The Efficiency of Software Development Models:
Proprietary vs. Free/Open Source

Prepared for
Professor David R. Kamerschen
Economics 5900
Spring Semester, 2009

Prepared By
Matthew J. Slotten
157 Woodrow Street
Athens, GA 30605
770-262-7538

mattslotten@gmail.com

April 14™, 2009

Abstract
The market for software is in many ways distinct from that of any other good due to

software’s strong network effects, imperfect public-good nature, and complexity. As a result, the
free market has two primary means of delivering software to consumers: the proprietary method,
and the free/open source method. These two contrasting methods of software production may
appear to be mutually exclusive, and many believe their coexistence to be unsustainable. This
study investigates the theoretical and empirical literature regarding the rationale and motivation

for, and welfare impacts and overall efficiency of, each software development model and how



Software Development Models 1

they interrelate. We can conclude from this study that these two models are in fact not mutually
exclusive and in some cases complementary, provided certain market conditions are met. We
can also conclude that the open source software development model is in fact consistent with
economic theory and is thus a sustainable method of software production.
The Efficiency of Software Development Models:
Proprietary vs. Free/Open Source
The advent of modern computer technology in the mid-1960s and its continued high
growth has generated a substantial demand for software to run on these systems. In an effort to
meet this demand, two models of development for software production have arisen. The first is
the proprietary model, in which a rent-seeking private firm employs labor and capital to produce
a software product in which the source code is not revealed so as to claim the software as
intellectual property. When most people think of software production, they are likely thinking of
this method, with Microsoft being a key example. In the case of proprietary software, the firm
producing the software must implement means to counter software’s public-good nature.
Practices such as software licenses, software as a service, and software patents are used to
transform software into an excludable and rival good. Pre-packaged software is the most
common type of proprietary software, where the software is available in a packaged form, not
tailored or custom written for one particular customer’s needs. The second model is known as
the free/open source model, in which individuals, and in some cases firms, collaborate to create
software, primarily distinguished from the proprietary model by having source code freely
available to the public under certain conditions. Open source software relies entirely on

volunteer contributions, as property rights are given to the public in general. Notable open



Software Development Models 1

source projects include the Linux operating system, the Apache web server, and the Mozilla
Firefox browser. The open source model produces software as a pure public good, leading many
to question the sustainability and incentives that allow this model to efficiently produce software.
Given the stark differences of these two models, many question how these models can coexist
and argue that in time, one will extinguish the other through Schumpeterian creative destruction.
After reviewing the literature and applying basic economic principles, I reach a very different
conclusion. Competition between open source software and proprietary software is sustainable

in the long run, and their coexistence is welfare improving.

Software: A Brief History and Overview

Software development has a tradition of cooperative development, allowing projects to
benefit from different contributors’ comparative advantages. Larger software projects often
require multiple developers, as different aspects of software projects, such as user interfaces,
documentation, and different functionalities, require different skill sets. Software can be
packaged as either “open source” or as “pre-packaged binaries.” In the case of open source
software, the code that allows the software to function is freely distributed and readable by the
user. In the case of pre-packaged software, the code is converted into machine-readable code,
not easily interpreted or modified by users. Most commercial software vendors today release
software in the pre-packaged binary format, so as to preserve intellectual property rights on the
software they produce. Josh Lerner and Jean Tirole divide software development into three
distinct eras (2006, p. 4).

The first era of the 1950s through 1970s is characterized primarily by development in



Software Development Models 1

academia and central research facilities. As James Bessen notes, owning a computer prior to the
1970s typically required most users to either self-develop software or contract custom software
development (2005, p. 8). In the context of computing history, this makes sense, as
single-person computer systems were available to people only in academic or research
institutions, as these systems were still too expensive to be owned by private individuals. Lerner
and Tirole note that in this first era, most software development had a loosely structured open
source nature, without clearly defined property rights where individuals would freely swap code
and standards (2006, p. 4). These poorly defined property rights soon resulted in legal
implications for both IBM and AT&T in the late 1970s and early 1980s (respectively) when they
began claiming property rights on computer operating systems. Not until the 1970s did a market
for pre-packaged software emerge as a result of the expansion in the low-cost personal computer

market, as illustrated in Figure 1.

Figure 1: Packaged Software Share of All Software Investment

100%

80%

60%

40%

- ﬁ///\

%tr—TT T T 7T T 7T 7 T T T T T T T T T T T T T T T T T T T T T T T T T T T 7T



Software Development Models 1

Source: Grimm and Parker (2000) p. 38

The second era of software development spanned the 1980s into the early 1990s. This
era of software development is characterized by high growth for commercial software
development firms, giving rise to now software giants such as Microsoft, Oracle, and SAP. As
Bessen notes, competing software firms began participating in “feature wars,” in hopes of
gaining market share and a dominant position in the market (2005, p. 8). Software became
increasingly complex as innovations in microprocessor technology permitted larger and more
robust applications. Despite the rapid increase in available feature-rich pre-packaged proprietary
software, it did not crowd out self-development solutions. As illustrated in Figure 1, roughly
30% of total software investment is devoted to pre-packaged software. This figure indicates that
pre-packaged software has failed to meet the needs of a significant portion of the market. While
this era saw the rise of commercial software vendors vying for market share, it also gave rise to
The Free Software Foundation, which introduced a general public license, or GNU, a cornerstone
of open source software development today. Although the formal definition of the GNU
provided a more structured approach to open source software projects, developers still lacked a
low-cost means of collaboration until the Internet became widely available in the early 1990s.

The third and current era of software development has seen a strong acceleration of open
source software development as a result of inexpensive and widespread availability of internet
access. As Alfonso Gambardella and Bronwyn Hall point out, the increase in computer
networking and the rise of the internet essentially lowered the marginal cost of communicating
codified knowledge to zero, better facilitating the open source model of software development

(2005, p. 4). Well-known open source projects such as the Linux operating system and the



Software Development Models 1

Apache web server were both developed in this era. Online communities supporting open source
development have proliferated, such as SourceForge.net and Tigiris.org. The proliferation of the
internet has also given rise to increased software piracy, allowing individuals to illegally
download pre-packaged software without paying for it, leading commercial software firms to
implement anti-piracy measures such as requiring unique license keys and product activation
before installing or using the software, and increased consumer education, all in attempts to
defeat the public-good nature of software.

Software, in its basic form, exhibits qualities of a traditional public good. A public good
is a good whose consumption is both non-rival and non-excludable. As one user’s use of a
software application on one system does not inhibit another user’s use on another, the
consumption of software can be considered non-rival. Furthermore, a software application can
be easily copied or downloaded from one computer to another at no cost to the user, making the
consumption of the application non-excludable. As discussed later, commercial firms implement
measures into their pre-packaged applications so as to defeat their public-good nature and allow
them to earn economic profits from their software.

Another key characteristic of software as an economic good is that its consumption
carries with it significant network externalities, which occur when the value of a good to a
potential consumer is determined in part by the number of consumers already owning or using
that good. Many software applications carry with them certain protocols, which they use to
communicate with other systems and applications. As more users adopt a particular protocol, it
becomes the de facto standard, forcing all future applications to use the established standards to

maintain compatibility, thereby increasing market size. Bruce Endries’s article, “Tech G.P.: All



Software Development Models 1

Web Browsers Not Created Equal,” suggests one such example in the case of internet browsers.
Although Microsoft’s Internet Explorer dominates the market at around 67 percent today, it does
not adhere to industry standards, set in large part by Netscape Navigator, the first
widely-available browsers eventually driven out of the market by Microsoft. These standards are
maintained by several organizations, including the World Wide Web Consortium (W3C), which
outline how browsers should interpret certain code (2009). Because Microsoft’s browser is not
entirely standards-compliant, many web page developers either have to accommodate Internet
Explorer’s nuances, or the full capability of their website is not available to Internet Explorer’s
users. Bessen suggests that in order to overcome compatibility issues, many proprietary software
firms release Application Programming Interfaces (APIs) to allow firms to customize how their

current systems interact with the new pre-packaged product (2005, p. 4).

The Nature of Proprietary Software
The market structure for proprietary software can be generally characterized as

monopolistic or oligopolistic with a small number of competitors. This market structure can be
attributed to a number of factors. The first, as Bessen suggests, is that due to the complex-good
nature of software in terms of features and compatibility, there exists no perfect substitute, and
few if any imperfect substitutes, for software products (2005, p. 3). While different software
products may perform similar tasks, such as word processing, they may do so in different ways,
using different interfaces, and in different file formats. The second factor can be summarized in
Bitzer’s point that software production is dominated almost entirely by fixed costs, with little or

no variable costs, and market segments for complex software products tend to produce a natural



Software Development Models 1

monopoly where economies of scale result in a barrier to entry for other firms (2004, p. 370). A
good example of this is Microsoft’s Windows operating system in the PC x86 architecture
market; no other firms have successfully produced and marketed a pre-packaged operating
system to compete with Windows. Lastly, proprietary software firms rely on patents to protect
their software as intellectual property and maintain monopoly power, preventing potential market
entrants from producing competitive products.

Software patents hold an important place in proprietary software production. Like any
other patent dependent industry, proprietary software producers rely on the ability to patent their
software to set monopoly prices. Lerner and Tirole have observed cases where individuals and
companies do not produce software themselves, but instead simply hold software patents to
collect economic rents from major software vendors (2004 p. 25). Copyrights and patents for
software can be registered without revealing the source code behind the patents, allowing firms
to maintain intellectual property rights. Software development as a whole may suffer from the
“anti-commons” problem, where the patenting of software may lead to lower research
productivity and cripple inventive activity, eventually leading to slower economic growth.
While patents allow proprietary software developers to maintain monopoly power in the
production of the software, developers must also attempt to overcome the free-rider problem in
consumption of their software, something not necessarily accomplished inexpensively.

Since software in itself exhibits public-good characteristics, proprietary software
developers have implemented a multitude of measures to overcome its non-rival and
non-excludable nature. One such measure to make the pre-packaged software excludable is to

simply not release its source code and only sell the binary executables of the software. Since



Software Development Models 1

users cannot read the source code, they cannot easily redistribute the software in different
markets, otherwise known as arbitrage. Another measure implemented by proprietary firms
which made the consumption of the software rival was to require users to enter a unique license
key before installing the software. Prior to the widespread use of the internet, product keys were
shipped in the packaging, so users were required to have the original packaging to install the
software. However, this method proved only partially effective, as there was no way to verify
that each license key entered was in fact unique. With the proliferation of the internet came
another dimension of complexity for issuing license keys. Users could simply upload the
software to other users along with the license key, allowing other users to pirate the software
without having to pay for it. To counter the problem of piracy, proprietary software vendors
implemented in their software the ability for the software to communicate with a central server,
verifying that the entered license key was indeed unique. Some proprietary firms issue a
hardware USB “key” or dongle that must be inserted into the computer at the time of installation.
Michael Stolpe asserts that the hardware key method is in fact the most secure technical measure
in software intellectual property protection. Stolpe has also found instances where software
distributors lower the costs of obtaining license keys, so as to reduce the monetary incentive to

pirate the software (2000, p. 28).

The Nature of Free and Open Source Software
At first glance, the open source software development model may seem paradoxical.
Open source software is a public good, supported entirely by volunteer contributions. This

suggests that open source software may be under-provisioned due to the free-rider problem.



Software Development Models 1

Volunteer contributions seem to counter economic intuition that private agents would put forth
sufficient effort to develop a public good without clearly defined property rights. Despite this,
there still exist a multitude of successful OS projects, some are arguably superior to
pre-packaged software.

Maurer and Scotchmer suggest that there must be a number of intrinsic and extrinsic
incentives for individual volunteers to contribute. Extrinsic motivations require an “audience,”
where programmers aspire to better their reputation among the open source community or build
their egos. Intrinsic motivations, in contrast, do not require an audience, where programmers
contribute in an effort to express creativity, be part of a group or team, pursue educational
purposes and experience accomplishment (2006, p. 12). Hakim Wafa Orman suggests in her
article, “Giving it Away for Free? The Nature of Job-Market Signaling by Open Source Software
Developers,” that many developers may choose to release their code as open source instead of
trying to bring it to market simply because the expected returns would not cover the cost of
obtaining patents, marketing the software, and implementing anti-piracy measures (2008, p. 2).
Lerner and Tirole emphasize the role of job-market signaling of OS contribution, as code is
easily attributed to the individual who contributed it (2004, p. 16). Further, many individuals
contribute to open source projects as a result of the ideology behind open source and in
opposition to proprietary software. Maurer and Scotchmer found that open source contributors
are overwhelmingly young male and single (Ghosh et al., 2002, Lakhani and Wolf 2005), with
males comprising roughly 98% of all open source contributors (Henkel and Tins, 2004) (2006, p.
13).

Not all contributions are from individuals in their free time. Bessen notes that about half



Software Development Models 1

of the entire development effort of open source software is conducted by programmers at work
with the knowledge of their supervisors (2005, p. 1). Private firms play an important role in
open source development, as is the case with HP, Novell, and IBM. These commercial
enterprises previously produced a UNIX variant operating system, but have since switched to
support Linux, an open source UNIX variant. Bitzer suggests that this switch can be attributed to
two reasons. The first is that the further development of Linux is cheaper than the incumbent’s
UNIX variant because the incumbent does not bear any of the development costs, as they are
borne by volunteer contributors. The second is that since Linux is freely available and can be
freely adapted to one’s needs, using it does not force the incumbent firm to depend on another
enterprise to further develop the operating system (2004, p. 370). These firms instead earn profit
by supplying ancillary services, such as training, consulting, and support, or by selling
complementary hardware. Many private firms may choose to use and contribute to open source
software because it is adaptable to their own needs, as opposed to pre-packaged software, which
is welfare-improving.

Open source licensing plays an important role in facilitating contribution and preserving
the ideology of OS, maintaining that open source software should be free to use, free to modify,
and free to redistribute. Maurer and Scotchmer highlight the social psychology perspective that
volunteer incentives to contribute will be reduced if there is a widespread perception that third
parties are profiting from the community’s efforts (2006, p. 14). While there are sundry different
open source licenses in use today, the two most pervasive ones are the Berkley Software
Distribution (BSD) and the GNU General Public License (GPL). Lerner and Tirole outline the

nature of each license. The BSD license is the most permissive license, permitting anyone to use



Software Development Models 1

the source code and redistribute it for a fee without making the source code publicly available.
This places BSD licensed code closer to true public domain. The GPL license is more
restrictive, requiring that all modifications be made freely available and insisting that others who
use the redistributed code do so as well. The GPL license also requires that all contributed code
must be licensed on the same terms (namely, GPL). Licenses such as the GPL are known as
copyleft licenses, where they seek to keep intellectual property free and accessible, in contrast to
copyright licenses (2004, p. 6).

While open source licensing aims to negate agents’ ability to free ride on others’
contributions in attempts to earn economic profits, no formal process inhibits free riding in terms
of production of open source code. Maurer and Scotchmer illustrate this point well in their
statement, “If ideas are not scarce — that is, if any good idea is likely to be had and implemented
by someone else — it is tempting to let someone else bear the development cost” (2006, p. 23). In
other words, open source development may be under provisioned because contributors who are
otherwise willing to write code may wait in hopes that someone else will write it first. This
phenomenon is essentially the opposite of patent incentives, where agents have an incentive to
develop as quickly as possible, so as to win intellectual property rights. Game theorists find
equilibria with both a pure strategy, where some users always contribute and some users always
free ride, and with a mixed strategy, where each user contributes with some probability and
development sometimes fails. Nonetheless, the number of open source projects is large and still

growing, offering evidence that open source software development is sustainable in the long run.

Competition between Proprietary and Open Source Software



Software Development Models 1

Since software is subject to substantial network effects and de facto standards, its utility
varies with adoption and compatibility between platforms. As a result, proprietary firms
experience little incentive to make their software products compatible with open source software
in attempts to lock in their customers to using complementary revenue-generating products. In
contrast, open source developers have a strong incentive to make their software compatible with
existing standards, permitting the open source software to work in a network comprised of
proprietary technologies, thereby increasing its adoption rate. An example of this is Samba, an
open source software application that permits Unix-like systems to share files and print services
with proprietary operating systems such as Microsoft Windows and Apple OSX. There exists no
similar application developed to run on either Windows or OSX. Similarly, as Dalle and Jullien
point out, it is now possible to emulate Windows on Linux machines, allowing Linux users to
install Windows software on their systems, but no application exists to do the same on Windows
machines (mimeo, p. 6). In her paper, “The Effects of Compatibility on Competition between
Proprietary and Open Two-Sided Platforms,” Wafa Hakim Orman uses a two-sided platform to
provide a framework for studying operating systems. Orman finds that in some cases,
proprietary firms may find it profitable to increase the compatibility of their software with open
source software, though in most cases these firms lack the necessary incentives to do so (2008, p.
2). Increased compatibility between proprietary software is welfare improving, particularly for
consumers, as it increases consumer choice and improves competition among software
producers. Assuming open source software can continue to incorporate established proprietary
standards, network effects alone may not be enough to extinguish competition.

Product heterogeneity plays an important role in the market for software. Software’s



Software Development Models 1

complex nature permits producers to differentiate their product easily, including interface design,
features, and standards. The simple fact that proprietary firms can sell their software at higher
prices than open source alternatives indicates that product heterogeneity exists, at least to some
extent. As a result, the market structure for many proprietary firms can be characterized as
monopoly markets; however, the emergence of open source operating system has transformed
many of these non-contestable markets into oligopoly markets. Since open source software is
developed entirely by volunteer efforts, and the costs of development are carried by them, open
source projects do not face the barrier to entry of decreasing average costs that proprietary firms
do. In this respect, the open source mode of development may more closely reflect the
competitive result: since the marginal cost of producing software is zero, its price should be zero.
Open source software can therefore enter markets where other proprietary firms cannot and exert
downward pressure on prices by offering consumers alternatives. Bitzer proposes using a
Launhardt-Hotelling model to illustrate this effect, where the open source firm does not bear any
R&D costs, while the proprietary firm bears substantial R&D costs. He postulates that price
pressure on the incumbent firm is dependent on the perceived heterogeneity of its product (2004,
p. 371). The more consumers see the open source alternative as a substitute, the further the
incumbent firm will have to depress price, or further differentiate its software from the open
source software. In this respect, open source software helps to restore competition to
traditionally uncompetitive software markets.

While open source software does not present capital costs to consumers, it is unlikely that
it will drive proprietary software vendors out of the market simply due to cost benefits. In many

cases, open source software may in fact be costlier to consumers than equivalent prepackaged



Software Development Models 1

software due to non-capital costs. These costs may consist of transaction costs imposed as a
result of network effects, difficulty of use and installation, and the unavailability of compatible
programs. Because open source software is provisioned through volunteer development,
contributors often choose to invest their efforts in projects that showcase their abilities rather
than maximize consumer welfare. As a result, some aspects such as attractive user interfaces,
product documentation, and technical support are under-provisioned in open source software,
which in turn raise consumers’ costs. Proprietary software-producing firms, on the other hand,
have a strong incentive to appeal to consumer needs and therefore will often provide substantial
technical support and product documentation along with their product, or as a two-part tariff.
Dalle and Jullien suggest that because of Linux’s lack of user-friendly interface and technical
support, it failed to penetrate the consumer and PC market, but succeeded in the server market,
where graphical user interfaces (GUIs) are not as highly valued (mimeo, p. 9). Proprietary firms
may therefore be able to charge a price above marginal cost, which should be close to zero, and
below the customer’s perceived cost of implementing an open source solution, thereby earning a
positive economic profit and maintaining market share.

The sustained competition between open source software and proprietary prepackaged
software presents significant benefits to consumers. One obvious benefit is an increase in
consumer choice. Through this increase in choice, consumers can maximize utility by selecting
the software application that best fits their needs. Proprietary software typically offers easier to
use interfaces, more features, and more thorough technical support than does open source, but at
the cost of the customization. Open source software, on the other hand, offers easier

customization, higher compatibility, and lower prices. Another benefit to consumers achieved



Software Development Models 1

through competition is a reduction in deadweight loss and an improvement in consumer surplus
attributed to the fact that open source software has driven proprietary software prices down,
closer to the competitive level. Lastly, competition between open source and proprietary
software has fostered faster innovation within the industry, as open source software is better
equipped to build on the ideas of the many, and proprietary firms are forced to keep up, thereby

benefiting consumers.

Conclusion

Software’s complexity has shaped private mechanisms to counter this obstacle, namely
the proprietary and open source software development models of production. Although each
model of software development differs fundamentally, in terms of incentive, market structure,
and property rights, their coexistence is both sustainable and welfare improving. Open source
software on its surface may seem perplexing to economists, after they evaluate software as an
economic good and the incentives behind open source production; it is obvious that open source
software does adhere to traditional economic principles. Open source software development has
transformed previously monopolized markets into more competitive ones, consumers now have
more choice, and network effects are overcome. We can expect to see more high growth in the
software industry, driven in large part by this competition. Proprietary firms will likely see some
of their market share further slip away to open source projects, but will likely maintain a
dominant position in certain software markets. In the near future, we may observe a

hybridization of these two models, which may be a subject of future research.

References



Software Development Models 1

Bessen, James, “Open Source Software: Free Provision of Complex Public Goods,” July 2005,
http://www.researchoninnovation.org/opensrc.pdf
Bitzer, Jurgen, "Commercial versus Open Source Software: The Role of Product Heterogeneity

in Competition," Economic Systems, Elsevier, December 2004, 28(4), 369-381.

Dalle, Jean-Michel, and Jullien, Nicolas, “Open-Source vs. Proprietary Software,” mimeo, 16p.,
http://opensource.mit.edu/papers/dalle2.pdf

Endries, Bruce, “Tech G.P.: All Web Browsers Not Created Equal,” The Daily Star, 6 March

2009.
http://www.thedailystar.com/lifestyles/local story 066043012.html

Gambardella, Alfonso, and Hall, Bronwyn H., “Proprietary vs. Public Domain Licensing of
Software and Research Products,” National Bureau of Economic Research Working
Paper w11120, February 2005,
http://www.nber.org.proxy-remote.galib.uga.edu/papers/w11120.pdf

Grimm, Bruce and Parker, Robert, “Recognition of Business and Government Expenditures for
Software as Investment: Methodology and Quantitative Impacts, 1959-98”, Bureau of
Economic Analysis, mimeo, 2000.
http://www.bea.gov/papers/pdf/software.pdf

Hakim Orman, Wafa, “Giving it Away for Free? The Nature of Job-Market Signaling by Open

Source Software Developers,” B.E. Journal of Economic Analysis and Policy: Advances

in Economic Analysis and Policy 8, January 2008, no. 1.

, “The Effects of Compatibility on Competition between Proprietary and Open

Two-Sided Platforms,” March 2008,



Software Development Models 1

http://ssrn.com/abstract=1129275

Lerner, Josh, and Tirole, Jean, “The Economics of Technology Sharing: Open Source and
Beyond,” National Bureau of Economic Research Working Paper 10956, December
2004,
http://www.nber.org/papers/w10956

Maurer, Stephen M., and Scotchmer, Suzanne, “Open Source Software: The New Intellectual
Property Paradigm,” National Bureau of Economic Research Working Paper 12148,
March 2006,
http://www.nber.org/papers/w12148

Stolpe, Michael, “Protection against Software Piracy: A Study of Technology Adoption for the

Enforcement of Intellectual Property Rights,” Economics of Innovation and New

Technology, 2000, 9, no. 1, 25-52.



